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Abstract 

The main results concern radicals and polynomial identities of rings which are sums of two 
subrings. It is proved that a ring which is a sum of a nil subring of bounded index and a ring 
satisfying a polynomial identity also satisfies a polynomial identity. Filds which are sums of two 
Jacobson radical subrings are classified. Several open questions are answered. @ 1998 Elsevier 
science B.V. All rights reserved. 
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0. Introduction 

Suppose that an associative ring R has the form R = RI +R2 , where RI and R2 are 

subrings of R (we keep this notation throughout the paper). One can ask what properties 

of R can be derived if RI and Rz satisfy certain conditions. This, natural and interesting 

on its own question, was also inspired by many earlier studies of similar problems in 

other sections of algebra (cf. [2]). It was for the first time (probably) posed in [22, 231 

and then studied in many papers [6, 9-121. However, the most inspired was Kegel’s 

paper [lo] in which he proved that if both RI and R2 are nilpotent, then so is R. 

There were also many independent works which in fact concerned specific aspects of 

the problem. For instance some papers (cf. [S]) of Flanigan concerned the problem of 

a description of rings R = RI + RI, with RI and R2 isomorphic to given rings, under 

the additional assumption that R1<1 R. Polin [16] proved that a ring P is projective in 
the category of all rings if and only if there is a free ring F containing a subting S 

isomorphic to P and an ideal Z such that F is the direct sum of S and Z as additive 

groups. In [15] Klein proved that if RI and R2 are left (right) nil ideals of R of bounded 
index, then R is a nil ring of bounded index. 
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One can ask why do we restrict ourselves to the case of two subrings only. The 

question was already raised by Kegel in [lo]. More precisely, he asked whether a 

ring which is a sum of three nilpotent subrings must be nilpotent itself. In [4] Bokut’ 

proved that every algebra over a field can be embedded into a simple algebra which 

is a sum of three nilpotent subalgebras. This result shows that the cases of two and 

more subrings are totally different. Let us note however that some results (cf. [13]) 

can be extended from two to more subrings, if additional relations among the subrings 

are assumed. 

The main studies of rings which are sums of two subrings concerned radicals and, 

recently, polynomial identities. We also concentrate on these topics. In particular, we 

characterize fields which are sums of two Jacobson radical subrings (Section 2) prove 

that a ring which is a sum of a nil ring of bounded index and a PI ring is also PI 

(Section 3) and prove that if there exists a simple ring which is a sum of a nil ring 

and a specific nil ring, then there also exists a simple nil ring (Section 4). Moreover, 

we comment on several results of [ 1 l] and answer questions mentioned there. 

All rings considered in this paper are associative but are not assumed to have an 

identity. To denote that I is an ideal (left ideal, right ideal) of a ring A, we write ZQA 

(Z<[A, Z<,A). 

Instead of “a ring A has property S” we write “A is an S-ring” or just “A E S”. The 

term “radical” means, depending on the context, “radical class” or “radical property”. 

The prime radical will be denoted by p. 

1. Annihilators and radicals 

Given a ring A, define the left (right) hyperannihilutor Z(A) (r(A)) of A to be the 

union lJ.>~hdA) OJ,>,rdA)), where _ 

lo(A)=ro(A)=O 

and for c( > I 

The intersection N(A) = l(A) n r(A) is called the hyperannihilator of A. 

The ring A is said to be left (right) T-nilpotent if A = Z(A) (A = r(A)). It is easy to 

see that a ring A is left (right) T-nilpotent if and only if every non-zero 

homomorphic image of A has non-zero left (right) annihilator. A ring whose all non- 

zero homomorphic images have non-zero left or right annihilators is called M-nilpotent. 
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Proposition 1.1. For every prime ideal P of R, r(R1) G P or l(Rz) E P. In particular 

if R is a prime ring, then r(R,)= 0 or l(Rz)=O. 

Proof. Suppose that CI and fi are ordinals such that if ~1’ cc1 or /I’ <b, then Z,/(Rl)rbt 

(Rz) C P. Then Z,(Rl)Rrg(R2) = E,(Rl)Rlrg(R2) + Z,(R~)R~Y~(RZ) 2 P. However, the 
ideal P is prime, so l,(Rl)r&R:!) C P. Now simple induction arguments give that 
1(Rl)r(R2) 2 P. Hence Z(Rl)Rr(R2) = Z(R,)Rlr(R2) + Z(Rl)Rv-(R2) C P, and since P 

is prime, l(R,)C P or r(RZ)cP. 0 

Let us note that if R is the ring A&(K) of 2x2-matrices over a field K and RI = (g “,), 

R2 = (i g), then R = R1 + R2 is a simple ring and both r(R1) and r(R2) are non-zero. 
Hence, in Proposition 1 .l the left hyperannihilator cannot be replaced by the right 
hyperannihilator. 

Proposition 1.1 gives in particular the following corollary which was proved in [l l] 
in a more complicated way. 

Corollary 1.2. N(Rl)N(R2) C B(R) and N(Rl)N(Rl) C_ P(R). 

Remark 1.3. To be precise, in [l l] Kegel considered not P(R) but the sum of 
all solvably embedded ideals of R. However, one can easily check that they both 
coincide. 

Kegel asked whether at least one of N(R1) and N(R2) is contained in P(R) (or at 
least in the locally nilpotent radical). The following easy example answers the question 
in the negative. 

Example 1.4. Let R=&(K) @ &(K), where K is a field, RI = (i “0) @ M2(K> and 
R2 =M2(K) @ (i “0). Clearly R=Rl + Rz, N(R1) # 0 # N(R2) but R is even Brown 

-McCoy semisimple. 

The example also shows that there are no direct relations between radicals of R and 
those of RI and R2 (at least for classical radicals). The situation improves when one 
of rings is radical. In [ 1 l] Kegel proved. 

Theorem 1.5. If R2 is locally nilpotent, then the subring of R generated by N(R,) 

and R2 is locally nilpotent and N(R1) is contained in the locally nilpotent radical 

of R. 

The idea of the proof would be hard to apply to other radicals. Another method was 
used in [6]. The proofs of Theorem 2 and Corollary 4 in [6] give 

Theorem 1.6. Zf R2 is Jacobson radical (locally nilpotent), then l(R1) + r(R1) is con- 
tained in the Jacobson (locally nilpotent) radical of R. 
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Remark 1.7. From Theorem 1.6 it is easy to get that if R2 is Jacobson radical (locally 

nilpotent), then the subring of R generated by I(R,)+r(R,) and R2 is Jacobson radical 

(locally nilpotent). Indeed, note that if I is an ideal of RI, then J = I+R$+IRz+R2IR2 

is the ideal of R generated by I. The subring of R generated by I and R2 is equal to 

J + R2. Now it suffices to put I = l(R1) + r(R1) and apply Theorem 1.6. 

Related is the following: 

Question (Kelarev and McConnell [13]). Does there exist a ring which is not Jacobson 

radical but is a sum of a Jacobson radical subring E and an additive subgroup F such 

that F2 C E? 

Recall that a radical S is called hereditary (left hereditary, right hereditary) if for 

every ring A E S and each 14 A (I < 1 A, I cr A), I E S. Hereditary radicals containing 

the prime radical /I are called supernilpotent. 
A radical S is called left (right) strong if for every ring A, S(A) contains all left 

(right) S-ideals of A. It is known [21] that if a radical S containing /3 is left or right 

strong and left or right hereditary, then it is left and right strong as well as left and 

right hereditary. Radicals of that type are called N-radicals. Examples of N-radicals 

are the prime, locally nilpotent and Jacobson radicals. The problem whether the nil 

radical is an N-radical is still open; it is called Koethe’s problem. 

Theorem 1 in [ 141 gives 

Theorem 1.8. If RI E fl and R2 ES, where S is a right strong and supernilpotent 
radical, then /(RI ) C S(R). 

It is bit surprising that, as an example in [14] shows, the assumption R1 E /? in 

Theorem 1.8 cannot be dropped. The problem of finding a reasonable extension of 

Theorem 1.8 seems to be quite interesting. 

As an immediate consequence of Theorem 1.8 one gets 

Corollary 1.9 (Kepczyk and Puczyfowski [14, Corollary 11). Suppose that S is a 
supernilpotent radical and R2 E S. 

If RI is a left (right) T-nilpotent ring and the radical S is right (left) strong, then 

R E S. 
If RI is an M-nilpotent ring and the radical S is left and right strong, then R ES. 

Corollary 1.9 applies in particular to the Jacobson, locally nilpotent and prime rad- 

icals. The corollary holds for the nil radical (even with RI nilpotent of index 2) if 

and only if the Koethe’s problem has a positive solution [6]. Now it is natural to ask 

whether one can get results similar to that of Corollary 1.9 with other assumptions on 

R1. The following theorem is of such type. 
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Theorem 1.10 (Kepczyk and Puczylowski [14, Theorem 21). Zf RI is a nil PI ring 

and R2 ES, where S is an N-radical, then R E S. 

Now we shall prove 

Proposition 1.11. Zf RI E p and R2 satisfies a multilinear identity 

c &&I(l)... &(d+l) s 0 with c 
tls= 1, 

H E &+I n(d+l)=d+l 

then RI & P(R). 

Proof. We can assume that R is a prime ring and then we have to show that RI = 0. 

If RI # 0, then it contains a non-zero nilpotent ideal I. Let k be a natural number 
such that Zk+’ = 0 and Zk # 0. Put L = Z + ZU and P = RI + L. Observe that L <I R and 
La P. Moreover, the modularity of the lattice of additive subgroups of R implies that 
P = RI + P fl Rz. If P 0 R2 were nil, then being a PI ring, it would be P-radical. Hence, 
by Theorem 1.10 we would get that P E j? and consequently L E /?. This is impossible 
because L is a non-zero left ideal of R and R is prime. Thus, P flR2 is not nil. 

Now, PnR2/LnRz=PrlR2/LnPnR2 z(PnR,+L)/LCP/L and P/L is a homo- 
morphic image of RI. Hence, P n R2/L n R2 is a nil ring. Consequently L n R2 is not 
nil. Let t be a non-nilpotent element of L nR2. Since L = ZfZU and Zkf’ = 0, we have 
tZk = 0. Substituting in the multilinear identity satisfied by R2, x1 = x2 = . . = xd = t, 

we get that 

tdR2 C td-‘R2t + td-2R2t2 $ . . . + R2td. 

Consequently tdR2Zk = 0 and tdRtk = tdRIZk + tdR2Zk = 0. Therefore, R is not prime, 
a contradiction. 0 

Obviously Proposition 1.11 can be applied when R2 is a commutative ring. Thus, 
we have 

Corollary 1.12. rf RI E b and R2 is commutative, then RI c j?(R). 

Note that the assumption on the identity in Proposition 1.11 cannot be dropped, 
which one can see taking R = RI the ring of nxn-matrices, n22, over a field and RI 

any non-zero nilpotent subring of R. 

In [l l] Kegel asked whether the subring of R generated by the locally nilpotent 
radicals of RI and R2 must be locally nilpotent or at least nil. This question has an 
easy negative answer. Let R be the ring ikfz(K) of 2x2-matrices over a field K and 
RI = (i “,), R2 = (; ,“). Obviously, RI is locally nilpotent (even R: = 0), the locally 
nilpotent radical of R2 is equal to P(R2) = (i f) and the subring generated by the 
radicals is equal to R. However, the problem (cf. [18]) is not so easy if one assumes 
that both RI and R2 are nil (locally nilpotent, prime radical) and it stimulated several 
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studies in the area. In [12] Kelarev constructed an example of a nil semisimple ring 

which was a sum of two locally nilpotent subrings. Recently, Salwa [20] developed 

Kelarev’s ideas and found simpler examples of the sort. They in particular show (though 

it was not emphasized in the paper) that a Jacobson semisimple ring can be a sum of 

two subrings which are sums of nilpotent ideals. We raise the following: 

Question. Can a ring which is a sum of two nil (locally nilpotent, prime radical) 

subrings contain a non-zero idempotent? 

Some results related to this questions can be found in [7]. 

We conclude this section by showing that there are non-strict radicals S such that 

R E S provided both RI and Rz are in S. The question of whether it is true was 

suggested to us by B.J. Gardner. 

Recall that a radical S is called strict if all S-subrings of each ring A are contained 

in S(A). 

Theorem 1.13. The upper radical S determined by the group ring A = Fz[Cz] of a 

cyclic group C, of order 2 ouer a jeld F2 of two elements is non-strict but if both 

RI and R2 are S-radical, then R is S-radical. 

Proof. Note that A = P + I, where P is a subring of A isomorphic to F2 and 14 A, 
I2 = 0. Moreover, P and I are the only non-trivial subrings of A. A ring is S-radical 

if and only if it cannot be homomorphically mapped neither onto A nor I. Clearly P 
is S-radical and A is S-semisimple. Hence S is not strict. Now if R is not S-radical, 

then it can be homomorphically mapped onto A or 1. Hence, A or I is a sum of 

homomorphic images of RI and Rz. In both cases I is a homomorphic image of RI or 

R2 and hence RI or R2 is not S-radical. 0 

2. Fields which are sums of two Jacobson radical subrings 

In [6] it was noted that the field of rational numbers is a sum of two Jacobson radical 

subrings. Here we characterize all fields of that type. We shall need the following 

lemma which is perhaps well known. We sketch its short proof for completeness. 

Lemma 2.1. Let M 5 L be subjields of an algebraic closure & of a finite prime 

field Fp. 
(i) If (L : M)<co, then L=MK, where K = F,(a) is a jinite subjiefield of I$, 

Moreover (L : M) = (K : K n M). 
(ii) For every natural number t dividing (L : M) there exists a unique subfield T 

ofLsuch thatMcTand(T:M)=t. 
(iii) If a, b E Fp, (M(a) : M) = r, (M(b) : M) = s and r,s are relatively prime, then 

(M(a + 6) : M) = rs. 



M. Kcpczyk. E.R. Puczy!owskilJournal of Pure and Applied Algebra 133 (1998) 1.51-162 157 

Proof. (i) As K one can take for instance Fp extended by a basis of L over M. 
From the theory of finite fields it is known that K = F,(a) for some a E FP and K is a 

splitting field over Fp of a polynomial xP” - X. If f(x) E M[x] is a minimal polynomial 

for LI over M, then f(x) divides xP” - x in M[x]. This implies that all roots of f(x) 

belong to K. Consequently f(x) E (K f! M)[x]. Hence, (L : M) = (M(a) : M) = deg f(x) 

=((KnM)(u):(KnM))==(K:KnM). 
(ii) By (i), (L : M) = (K : K n M), so t divides (K : K n M). From the theory of finite 

fields it is known that there exists a unique subfield N of K such that K nM C N and 

(N : K nM) = t. Now, applying (i), it is not hard to check that T =MN satisfies the 

hypothesis of (ii). 

(iii) Clearly, (M(a, b) : M) = rs, so (M(a + b) : M) = r’s’ for some divisors Y’ of Y 

and s’ of s. By (ii), there are subfields T’ of M(u) and T” of M(b) containing M 
such that (T’ : M) = r’ and (T” : M) = s’. Clearly, (T’T” : M) = r’s’, so the uniqueness 

in (ii) gives that M(u + b)= T’T”. Now it is enough to show that a,b E T’T”. By (i), 

(T’T”(u):T’T”)=(Fp(u):T’T”flF,(u)) and r=(M(u):M)=(Fp(u):MnF’(u)). 

Clearly, (F,(u) : T’T” n Fp(u)) divides (F,(u) :M n Fp(u)), so (T’T”(u) : T’T”) divides 

Y. Similarly (r’T”(b) : T’T”) divides s. But T/T”(u) =M(u + b,u) =M(u, b) = 

M(u + b, b) = T’T”(b). Hence, since Y and s are relatively prime, T/T”(u)= T’T” 

= T/T”(b). 0 

Now we are ready to prove 

Theorem 2.2. Given a field F the following are equivalent: 

(a) F = A + B for some Jacobson radical rings A and B; 
(b) F = A + B for some proper subrings A and B of F, 
(c) ch F = 0 or trF, F > 0, where Fo is the prime subfield of F. 

Proof. It is clear that (a) implies (b). Suppose now that (b) holds and (c) does not 

hold. Consequently, F is a subfield of an algebraic closure FP of a finite prime field 

Fp. Then A and B are locally finite and, being domains, they must be fields. To get 

a contradiction if suffices to show that F = A U B. Set M = A f’B and take any f E F. 

We have to show that f E A U B. Clearly we can assume that (M(f) : M) = n > 1 

and for every x E F with (M(x) :M)<n, we have x E A U B. Take any y EM(~). 

If (M(y):M)<n, then _vEM(f)nA+M(f)nB. Suppose now that (M(y):M)=n, 
i.e., M(y) =M(f). Let y=u + b for some a E A and b E B. By Lemma 2.1 (ii), if 

(M(u) : M) = r and (M(b) : M) = s, then r and s are relatively prime. Hence by Lemma 

2.l(iii), M(f)=M(y)=M(u+b)=M(u,b), so again yEM(f)nA+M(f)nB. Con- 

sequently, M(f)=M(f)flA + M(f)nB. This implies that if (M(f)nA:M)=k 
and (M(f) n B : M) = 1, then (M(f) : M) = k + 1 - 1. However, both k and 1 divide 

(M(f) : M), so k = 1 or I= 1. Therefore f EA U B. Thus (b) implies (c). 

Suppose now (c). Then we can assume that F is an algebraic extension of the field 

Q of rational numbers or F is an algebraic extension of the field K = F&C) of rational 

functions over Fo in a non-empty set of indeterminates X. Let P denote the ring of 
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integers in the former case and the ring of polynomials over F0 in indeterminates from 
X in the latter. Let p be the integral closure of P in F. Clearly F is equal to p 
localized at S = P \ {0}, i.e, F =I’S-‘. Let p,q be two distinct irreducible elements 
in P and let I and J be prime ideals in P with In P = pP and J n P = qP. Denote 

by A and B the Jacobson radicals of P localized at p \ I and p \ J, respectively. Thus 
A=I(P\Z)-’ and B=J(p\J)-‘. We claim that A+B=F. Since P=pP+qPCI+J, 

we have that P = I + J. For every irreducible element s E P and each natural number 

n, s P-n E A + B. This is clear if s # p, q. Now 1 = pn+‘pl + qp2 for some pl, p2 E P. 

Thus p-” = pp~ + qpzp-” E A + B. Similarly q-” E A + B. Moreover, every element 
of S-’ is a sum of elements of the form pspn, where p E P and s is an irreducible 
element of P. By the foregoing pss- “G(Z+J)(A+B)cA+B. Hence, since F=pS-‘, 

F = A + B. The result follows. 0 

It seems that it would not be easy to describe the class of all rings which are sums 
of two Jacobson radical subrings. 

A descending chain II > 12 > . . . of ideals of a ring A is said [ 1 l] to absorb A if for 
every natural number n one has 

AI, + LA C I,,+]. 

In [ 1 l] Kegel asked whether the existence of properly descending absorbing chains 
of ideals of R, and R2 is sufficient to force the ring R to be non-simple. The answer is 
negative. Indeed, let Q be the field of rational numbers and Ql = {2n/(2m + 1) ( n,m 

any integers}, Q2 = {3k/Z 1 k a integer and I a integer relatively prime to 3). From 
the proof of Theorem 2.2 (cf. also [6]) it follows that Q = Ql + Q2. Clearly Q; and 

Q,“, n= 1,2 ,..., are properly descending absorbing chains of ideals of Ql and Q2, 
respectively. 

3. Polynomial identities 

In [l] Bahturin and Giambruno proved that if R1 and RZ are commutative, then 
R is a PI ring satisfying the identity [x, v][z, t] 3 0 (as usual [x, ~1 = xy - vx). 
Beidar and Mikhalev [3] extended this result proving that if RI satisfies the identity 
[xi,y1][x2, ~21.. . [xn,yn] = 0 and R2 satisfies the identity [xl, yl][xz, ~21.. . [xm, ym] 5 0, 
then R is a PI ring. They also asked 

Question. Suppose that both RI and R2 are PI rings. Is R a PI ring? 

In this section we answer the question positively in the case when RI is nil of 
bounded index. In the proof we follow some methods of [3,14]. 

Given a ring A we denote by W(A) the sum of nilpotent ideals of A. We follow the 
convention that A0 C W(A) if and only if A is nilpotent. 
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Lemma 3.1 (Kepczyk and Puczyfowski [14, Lemma 11). If a is an element of a ring 
A and for a natural number n, A” C W(A), then (Au)“-’ C W(Aa). 

Now we shall prove 

Proposition 3.2. If RI is a nil PI ring, R2 is a PI ring and R#O, then R contains a 
non-zero left ideal which is a PI ring. 

Proof. For every nil PI ring A, there is (cf. [19, Theorem 1.6.361) an integer n >_ 0 

such that A” G W(A). 

We proceed by induction on n such that R; 2 W(Rl). Obviously, we can assume 

that R is semiprime. Suppose first that n = 0, i.e., R’; = 0 for a natural number m. For 

m = 1 the result is clear. Thus assume that m > 1, RI # 0 and the result holds when the 

index of nilpotency of RI is less than m. Let L = RI + RR,. It is easy to see that L 

is a left ideal of R and the right annihilator I of L in L contains Rjn-‘. Furthermore 

L = R1 + (L n R2). Now L/Z = (RI + 1)/Z + ((L n R2) + Z)/Z. Obviously (R, + 1)/Z is 

nilpotent of index not greater than m - 1 and ((L n R2) + I)/1 is a PI ring. Moreover, 

since R is semiprime, L/I is non-zero. Hence, L/I contains a non-zero left ideal K/I 

which is a PI ring. Obviously, K is also a PI ring and 0 # LK C K, so LK is a non-zero 

left ideal of R which is a PI ring. 

Suppose now that n > 0 and the result holds for smaller integers. Note that if I and 

J are ideals of RI such that JI = 0, then Ri = RI + IRJ is a subring of R, IRJ is an 

ideal of Ri such that (ZRJ)2 = 0 and I?,/IRJ is a homomorphic image of RI. These 

imply that Ri is a nil PI ring and (Ri )” C W(Rl). Suppose that Of a ER, n R2 and 

put U = {x E Ra 1 Rax = 0). Obviously U is an ideal of Ra and, since R is semiprime, 

U #Ra. By Lemma 3.1, we have (Ria)“-’ C W(Rla). Hence, applying the induction 

assumption to Ra/U =(r?la + U)IU + (R2a + U)/U, we get that RafU contains a 

non-zero left ideal T/U which is a PI ring. Clearly, RaT is a non-zero left ideal 

of R which is a PI ring. Hence, the result holds provided Ri n R2 # 0. Thus let us 

assume that Ri nR2=0. Then Ri =Ri n(R1 +Rz)=Rl +(R, nR2)=Rl, which gives 

IRJ C RI. In particular if K is an ideal of RI and Kk = 0, then for every l<i<k - 1, 

Ai = Kk-‘RI? 5 RI. The ring satisfies for a natural number d the identity 

x,xz...xd= c ‘%%r(l)%(2) . . .&c(d), 

where the sum ranges over all non-trivial permutations of the set { 1,2,. . . , d}. Hence, 

if k>d, then 

(Kk-lR)dKd = A,A2 . ..Adc CAn(,)lln(2)...An(d)=O, 

so (Kk-lR)d+l = 0. Hence, since R is semiprime, for every nilpotent ideal K of R,, 
Kd = 0. This easily implies that R1 is nilpotent, which contradicts the assumption that 

n >O. The proof is complete. 0 
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Theorem 3.3. If RI is a nil ring of bounded index and RZ is a PI ring, then R is a 

PI ring. 

Proof. Let R be the class of all rings R = RI + R2, such that RI is a nil ring of 

bounded index and R2 is a PI ring. Suppose that there is R E A? which is not a PI 

ring. Let F = Z(X,,X~ . . .) be the free ring in indeterminates x1,x2,. . . over the ring 

of integers Z and let A4 be the multiplicatively closed subset of F generated by all 

standard polynomials. For every 0 # s E A4 there is a homomorphism cp : F+R such that 

p(s) # 0. Hence there is a homomorphism $ : F+ n R of F into a direct power fl R 
such that 0 @$(M). Let T be an ideal of n R maximal with respect to T n $(M) = 8. 

Clearly, (n R)/T is a prime ring and there is a homomorphism 4 : F+(fl R)/T such 

that 0 # I&M). Since every PI ring satisfies a power of a standard identity, (n R)/T is 

not a PI ring. Clearly, (fl R)/T E 8. Hence, we can assume that R is a prime ring. If 

k = char(R), then the free Z/kZ-algebra K = (Z/kZ)(xl ,x2,. . . , ) can be embedded into a 

direct power n R. Let I be an ideal of n R maximal with respect to K n I = 0. Clearly, 

R = (n R)/I E A’ and I? is prime. Moreover. we can assume that K C R and for every 

non-zero ideal J of I?, we have J n K # 0. By Proposition 3.2, R contains a non-zero 

left ideal which is a PI ring. Hence, R is a GPI ring and by [19, Theorem 7.6.71, 

the Martindale’s central closure Q of R is a strongly primitive ring with a non-zero 

socle S. Now S n I? is a non-zero ideal of R. Hence there is 0 # f E S n K. Take an 

idempotent e in S such that ,fe = f. By [19, Proposition 7.5.17(i)], Qe is a PI ring. 

Consequently Kf = Kfe c Qe is a PI ring, a contradiction. 0 

4. Simple rings 

In [ 1 l] Kegel asked whether the ring R is non-simple provided the locally nilpotent 

radicals of both RI and R2 are non-zero. As we have already noted in Section 1 the 

ring R of 2 x2-matrices over a field is a sum of a subring RI such that Ry = 0 and a 

subring R2 with non-zero P-radical. However by Corollary 1.9 and Theorem 1.10, if 

Rl is locally nilpotent and RI is M-nilpotent or nil PI, then R is locally nilpotent. No 

locally nilpotent ring can be simple. Thus in these cases R cannot be simple. As we 

have mentioned at the end of Section 1 there are Jacobson semisimple rings which are 

sums of two locally nilpotent subrings. These suggest 

Question. Does there exist a simple ring which is a sum of two locally nilpotent 

(/?-radical) subrings? 

The rings of the mentioned examples of Kelarev and Salwa are non-simple because 

they are graded by the semigroup of natural numbers. 

Let us recall that the question of whether there exists a simple nil ring is still open. 

Perhaps there is a better chance to construct a simple ring which is a sum of two nil 

subrings. We conclude this paper with some remarks which show in particular that in 
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some cases to construct such a simple ring is as hard as to construct a simple nil ring 

itself. 

Proposition 4.1. Let S 2 fl be a right hereditary radical, _,$‘= {P 1 P contains no non- 

zero kft S-ideal} and let TQL</A. 
(i) If I is an ideal of A maximal uith respect to I n L s T and L/T E .,1., then 

A/I E . . $ . . 

(ii) IfA E IV, then L/S(L) E -1’. 

Proof. (i) Obviously, we can assume that I = 0 and then we have to show that 

L/T E f implies A E _Y. 

Suppose that K < lA and K ES. Take any 1 EL. Clearly, IK cr K, so the heredi- 

tariness of S gives 1K ES. It is not hard to check (cf. [17, Lemma 2]), that the map 

rl + jQAl)--tlr + p(lA) is a ring isomorphism of Al/j(Al) onto lA/j?(lA). In particular 

(Kl+ RAl))IB(Al) ‘v (lK + B(lA))lB(lA). H ence, since /I&S, we have Kl E S. How- 

ever, KI < 1 L and L/T E ..,1^, so KI C: T. Consequently, KL C T and (K +KA)L C T. Now 

J = K +KAU A and (J n L)’ C JL C T, which together with /I C S and S(L/T) = 0, give 

J n L C T. Hence (since we assumed that I = 0) J = 0. Thus K = 0 and we are done. 

(ii) Suppose that S(L) C K <IL and K E S. Then LK cr K, so LK ES. Since 

LK < iA and A E i I -, we have that LK = 0. Thus K C p(L) C. S(L). This implies that 

L/S(L) E . ..2“. 0 

Corollary 4.2. If .,Y is that of Proposition 4.1, then the upper radical u (- = {Al every 
non-zero homomorphic image of A contains a non-zero left S-ideal) determined by 
L 1’ is an N-radical. 

Proof. Clearly, /3 C U, ( ‘. By Proposition 4.1 , ..1 1 is a left regular class (i.e. every non- 

zero left ideal of a ring in .4 can be homomorphically mapped onto a non-zero ring 

in _,t’). Hence by [5, Theorem 91, u+- is a left strong radical. We shall prove that it 

is left hereditary. For, let L < [A and A E u 1.. If T<1 L and L/T E I I/‘, then for an ideal 

I of A maximal with respect to I n L C T we have by Proposition 4.1, that A/Z E . . 1.. 

However A E q ( ., so A = I. Consequently, T = L and we are done. 0 

In particular we have: 

Corollary 4.3. Nil = {A ( every non-zero homomorphic image of A contains a non- 
zero left nil ideal) is an N-radical containing the class of all nil rings. 

Corollary 4.4. If R is a simple ring, R2 is a nil ring and (a) RI is a P-radical ring 
Gth l(R1) + r(Rl)#O (in particular, if RI is an M-nilpotent ring) or (b) RI is a nil 
PI ring, then there is a simple nil ring. 
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Proof. By Theorem 1.8 and Theorem 1 .lO, R E Nil. Hence, R contains a non-zero left 
nil ideal L. Since R @ /?, RL/fl(RL) is a non-zero nil ring. We claim that RL/b(Rc) is 
a simple ring. For, if B(RL) 5 IQ RL, then RLIRa R. Thus RLJR = 0 or RLIR = R. In 
the former case RLI = 0, so I = p(RL). If RLIR = R, then I > RLIRL = RL, so I = RL. 

This proves the claim and the corollary. Cl 
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